Назначение, устройство, принцип работы кривошипно-шатунного механизма. Кривошипно-шатунный механизм двигателя внутреннего сгорания: устройство, назначение, как работает Какие подшипники устанавливаются в кшм

💖 Нравится? Поделись с друзьями ссылкой

Устройство кривошипно-шатунного механизма предназначается для преобразования возвратно-поступательного движения поршня в движение вращательное, которое может выступать в роли движения коленчатого вала в двигателе внутреннего сгорания автомобиля, и наоборот.

Детали кривошипно-шатунного механизма делятся условно на две группы, к которым относятся: подвижные детали и неподвижные детали. Подвижные детали это: поршень вместе с , устройство коленчатого вала с подшипниками, шатун, поршневой палец, маховик и кривошип. К неподвижным деталям относятся: блок цилиндров, которые являют собою базисные детали двигателя внутреннего сгорания (являет собою единую отливку с картером); картер сцепления и маховика, головка цилиндров, нижний картер, крышки блока, гильзы цилиндров, прокладки крышек блока, крепежные детали, полукольца коленчатого вала, кронштейны.

1. Назначение и характеристика шатунного механизма.

Устройство кривошипно-шатунного механизма является основным устройством поршневого двигателя внутреннего сгорания. Данная система предназначается для восприятия давления газов при определенном такте рабочего хода. Кроме того, данный механизм позволяет преобразовывать движения поршней возвратно-поступательного характера во вращательные движения коленчатого вала автомобиля.

Стандартное данное устройство состоит из поршней, которые имеют поршневые кольца, гильз и головок цилиндров, блок-картера, шатунов, коленчатого вала, маховика, шатунных и коренных подшипников. В моменты непосредственной работы двигателя внутреннего сгорания прямое воздействие на детали кривошипно-шатунного механизма имеют силы инерции возвратно-поступательно движущихся масс, давление газов, инерции разного рода неуравновешенных вращающихся масс, трения и тяжести.

Все вышеуказанные силы, кроме, конечно же, силы тяжести, воздействуют на изменение значения и направления всех рассматриваемых величин. Все это напрямую зависит от угла поворота устройства коленчатого вала и процессов, которые происходят уже непосредственно в цилиндрах двигателя внутреннего сгорания.

2. Конструкция шатунного механизма.

Поскольку все составные кривошипно-шатунного механизма уже известны, стоит приступить к рассмотрению устройства коленвала. Коленчатый вал являет собою один из основных элементов двигателя внутреннего сгорания, который наряду с другими деталями цилиндропоршневой группы определяет ресурс самого мотора.

Так, ресурс устройства будет характеризоваться несколькими показателями: износостойкостью и усталостной прочностью. Коленвал принимает на себя все усилия, которые действуют на поршни, с помощью шатунов. После этого коленчатый вал передает все эти усилия на механизм трансмиссии. Уже от него будут приводиться в действие разного рода механизмы двигателя внутреннего сгорания. Устройство коленчатого вала состоит из: коренных шеек, шатунных шеек, связывающих щек, хвостовика и носка.

3. Неисправности шатунного механизма.

При непосредственной работе двигателя внутреннего сгорания в результате действия непостоянных и чересчур высоких динамических нагрузок, от сил инерции движущихся и вращающихся частей, от давления газов вал подвергается изгибу и кручению, а отдельные поверхности устройства просто изнашиваются.

Все усталостные повреждения накапливаются непосредственно в структуре металла, вследствие чего возникают микротрещины и различного рода дефекты. Определение износа элементов проводится посредством использования универсального и специального мерительного инструмента. Для того, чтобы обнаружить трещины нужно использовать магнитный дефектоскоп. При постоянной эксплуатации коленчатого вала он подвергается возникновению дефектов.

Самым распространенным является дефект износа. Но износу подвергается множество деталей всего устройства. При износе коренных шеек и шатунных, овальности и конусности нужно производить шлифование под необходимый для ремонта размер. Нанесение наплавкой покрытий, электроконтактной приваркой ленты, металлизацией, наполнением поверхности порошковыми материалами – решение данной проблемы.

Кроме того, рекомендуется установить новые полукольца и провести процедуру пластинирования. Кроме того износ может коснуться посадочных мест, которые нужны для распределительной шестерни, шкива и маховика. Износ касается и маслогонной резьбы, поверхности фланца для маховика, штифта для маховика, шпоночных канавок. Для того, чтобы решить все вышеуказанные проблемы не потребуется много ресурсов и времени.

Для первой проблемы нужно произвести обычную металлизацию, наплавку или электронную приварку ленты. Проблема с резьбой решается обыкновенным углублением резьбы резцом до нормализированного профиля. Штифты нужно попросту заменить, а вот для канавок нужно произвести фрезерование под увеличенный размер шпонок и для новых шпоночных канавок. После этого нужно сделать наплавку и проблема пропадет.

Помимо этого износ может коснуться и посадочного места для наружных колец в торце вала, отверстий под штифты, крепления маховика и резьбы. Везде нужно производить растачивание посадочных мест и запрессовку втулки. Кроме того для штифтов нужно произвести развертывание для ремонтного размера и заварку. Для резьбы также нужно произвести зенкерование или растачивание с увеличением резьбы в последующем процессе. Также делается и углубление всех резьбовых отверстий.

Помимо износа проблемы возникают и со скручиванием вала, вследствие чего происходит нарушение расположения кривошипов. В данном случае нужно сделать шлифование шеек под особый ремонтный размер и наплавить шейки с последующей обработкой. Самой проблематичным могут быть трещины в шейках вала, так как помимо их шлифования под ремонтный размер, нужно будет произвести разделку трещин посредством абразивного инструмента. В принципе, этого вполне достаточно для автомобилиста, так как другие проблемы и неисправности могут требовать профессионального вмешательства со стороны.

4. Обслуживание шатунного механизма.

Правильное обслуживание двигателя внутреннего сгорания и его нормальная эксплуатация будут обеспечивать минимальный износ всех его деталей и его бесперебойную работу. Кроме того, кривошипно-шатунный механизм не будет нуждаться в ремонте достаточно длительное время.

Для того, чтобы обеспечить нормализированные условия работы всех конструктивных составных кривошипно-шатунного механизма в период его эксплуатации категорически НЕ допускается следующее:

- продолжительная работа при перегрузке двигателя;

Эксплуатация двигателя в условиях пониженного давления масла;

Эксплуатация двигателя при сильно низкой картерной температуре масла;

Продолжительная работа мотора на холостом ходу, которая будет вызывать закоксовывание поршневых колец;

Работа мотора, в котором отсутствует кожух вентилятора или он есть, но его прилегание является неплотным к привалочной поверхности;

Работа двигателя, где отсутствует воздухоочиститель, или он является в неисправном состоянии;

Перебойная работа двигателя, сопровождающаяся дымным выхлопом и стуками.

При непосредственной разборке устройства двигателя внутреннего сгорания для его ремонта следует производить очистку полостей шатунных шеек механизма коленчатого вала. Для того, чтобы полностью очистить все полости, нужно вытащить шплинты и вывернуть резьбовые пробки. От того, насколько все правила технического обслуживания системы смазки и от того, насколько правильно хранится масло и заправляется в двигатель, будет зависеть эффективная составная центробежной очистки масла из полостей шатунных шеек.

Если же рекомендуемые правила не будут соблюдены, то полости шатунных шеек достаточно быстро наполнятся различными отложениями, а очистка масла вообще канет в небытие. Если же очень сильно снизилась мощность, дымление и выход газов являются достаточно сильными, запуск двигателя является трудным, возникновении ненормальных стуков, которые связаны с неисправностью кривошипно-шатунного механизма, следует незамедлительно «влезать» в устройство и его осматривать. Разборку двигателя внутреннего сгорания следует производить в закрытом помещении.

Основной задачей , использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.

Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.

Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.

Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.

Принцип действия кривошипно-шатунного механизма

Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.

Устройство КШМ

Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.

При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.

И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.

Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.

Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.

За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.

Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.

На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).

Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.

Гильза

Съёмная гильза

Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.

Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.

Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.

В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.

Поршень

Поршень принимает на себя энергию, выделяемую при сгорании, и за счет своего перемещения преобразовывает ее в механическое действие. Состоит он из днища, юбки и бобышек для установки пальца.

Устройство поршня

Именно днищем поршень и воспринимает энергию. Поверхность днища в бензиновых моторах изначально была ровной, позже на ней стали делать углубления для клапанов, предотвращающих столкновение последних с поршнями.

В дизельных же моторах, где смесеобразование происходит непосредственно в цилиндре, и составляющие смеси туда подаются по отдельности, в днищах поршня выполнена камера сгорания – углубления особой формы, обеспечивающие более лучшее смешивание компонентов смеси.

В инжекторных бензиновых двигателях тоже стали применять камеры сгорания, поскольку в них тоже составные части смеси подаются по отдельности.

Юбка является лишь его направляющей в гильзе. При этом нижняя часть ее имеет особую форму, чтобы исключить возможность соприкосновения юбки с шатуном.

Чтобы исключить просачивание продуктов горения в подпоршневое пространство используются поршневые кольца. Они подразделяются на компрессионные и маслосъемные.

В задачу компрессионных входит исключение появления зазора между поршнем и зеркалом, тем самым сохраняется давление в надпоршневом пространстве, которое тоже участвует в процессе.

Если бы компрессионных колец не было, трение между разными металлами, из которых изготавливаются поршень и гильза было бы очень высоким, при этом износ поршня происходил бы очень быстро.

В двухтактных двигателях маслосъемные кольца не применяются, поскольку смазка зеркала производиться маслом, которое добавляется в топливо.

В четырехтактных смазка производится отдельной системой, поэтому чтобы исключить перерасход масла используются маслосъемные кольца, снимающие излишки его с зеркала, и сбрасывая в поддон. Все кольца размещаются в канавках, проделанных в поршне.

Бобышки – отверстия в поршне, куда вставляется палец. Имеют отливы с внутренней части поршня для увеличения жесткости конструкции.

Палец представляет собой трубку значительной толщины с высокоточной обработкой внешней поверхности. Часто, чтобы палец не вышел за пределы поршня во время работы и не повредил зеркало гильзы, он стопориться кольцами, размещающимися в канавках, проделанных в бобышках.

Это конструкция ЦПГ. Теперь рассмотрим устройство кривошипно-шатунного механизма.

Шатун

Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.

Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.

Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.

По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.

Коленчатый вал

Перейдем к коленчатому валу. Он имеет достаточно сложную форму. Осью его выступают коренные шейки, посредством которых он соединен с блоком цилиндров. Для обеспечения жесткого соединения, но опять же подвижного, в блоке посадочные места вала выполнены в виде полуколец, второй частью этих полуколец выступают крышки, которыми вал поджимается к блоку. Крышки к с блоком соединены болтами.

Коленвал 4-х цилиндрового двигателя

Коренные шейки вала соединены с щеками, которые являются одной из составных частей кривошипа. В верхней части этих щек располагается шатунная шейка.

Количество коренных и шатунных шеек зависит от количества цилиндров, а также их компоновки. В рядных и V-образных двигателях на вал передаются очень большие нагрузки, поэтому должно быть обеспечено крепление вала к блоку, способное правильно распределять эту нагрузку.

Для этого на один кривошип вала должно приходиться две коренные шейки. Но поскольку кривошип размещен между двух шеек, то одна из них будет играть роль опорной и для другого кривошипа. Из этого следует, что у рядного 4-цилиндрового двигателя на валу имеется 4 кривошипа и 5 коренных шеек.

У V-образных двигателей ситуация несколько иная. В них цилиндры расположены в два ряда под определенным углом. Поэтому один кривошип взаимодействует с двумя шатунами. Поэтому у 8-цилиндрового двигателя используется только 4 кривошипа, и опять же 5 коренных шеек.

Уменьшение трения между шатунами и шейками, а также блоком с коренными шейками достигается благодаря использованию вкладышей – подшипников трения, которые помещаются между шейкой и шатуном или блоком с крышкой.

Смазка шеек вала производится под давлением. Для подачи масла применяются каналы, проделанные в шатунных и коренных шейках, их крышках, а также вкладышах.

В процессе работы возникают силы, которые пытаются сместить коленчатый вал в продольном направлении. Чтобы исключить это используются опорные полукольца.

В дизельных двигателях для компенсации нагрузок используются противовесы, которые прикрепляются к щекам кривошипов.

Маховик

С одной из сторон вала сделан фланец, к которому прикрепляется маховик, выполняющий несколько функций одновременно. Именно от маховика передается вращение. Он имеет значительный вес и габариты, что облегчает вращение коленчатому валу после того, как маховик раскрутится. Чтобы запустить двигатель нужно создать значительное усилие, поэтому по окружности на маховик нанесены зубья, которые называются венцом маховика. Посредством этого венца стартер раскручивает коленчатый вал при запуске силовой установки. Именно к маховику присоединяются механизмы, которые и используют вращение вала на выполнение полезного действия. У автомобиля это трансмиссия, обеспечивающая передачу вращения на колёса.

Чтобы исключить осевые биения, коленчатый вал и маховик должны быть хорошо отбалансированы.

Другой конец коленчатого вала, противоположный фланцу маховика используется зачастую для привода остальных механизмом и систем мотора: к примеру, там может размещаться шестерня привода масляного насоса, посадочное место для приводного шкива.

Это основная схема коленчатого вала. Особо нового пока ничего не придумано. Все новые разработки направлены пока только на снижение потерь мощности в результате трения между элементами ЦПГ и КШМ.

Также стараются снизить нагрузку на коленчатый вал путем изменения углов положения кривошипов относительно друг друга, но особо значительных результатов пока нет.

Autoleek

Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.

Устройство механизма

Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

  • деревянные части быстро изнашивались и требовали частого ремонта или замены;
  • рабский труд обходился дешевле высоких для того времени технологий.

В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

  • Подвижные.
  • Неподвижные.

К первым относятся:

  • поршень;
  • кольца;
  • пальцы;
  • шатун;
  • маховик;
  • коленвал;
  • подшипники скольжения коленчатого вала.

К неподвижным деталям кривошипно-шатунного механизма относят:

  • блок цилиндров;
  • гильза;
  • головка блока;
  • кронштейны;
  • картер;
  • другие второстепенные элементы.

Поршни, пальцы и кольца объединяют в поршневую группу.

Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.

Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.

Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.

Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:

  • сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
  • влажная, гильза омывается снаружи охлаждающей жидкостью.

Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.

Поршни

Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.

Деталь выполняет следующие функции:

  • на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
  • на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
  • далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
  • на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.

На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.

Конструктивно изделие подразделяется на такие части, как:

  • днище, воспринимающее давление газов;
  • уплотнение с канавками для поршневых колец;
  • юбка, в которой закреплен палец.

Палец служит осью, на которой закреплено верхнее плечо шатуна.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Поршневые пальцы

Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

Различают следующие типы конструкции пальцев:

  • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
  • Плавающие. Могут проворачиваться в своих креплениях.

Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной группы и увеличивает их ресурс.

Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.

Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.

При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.

Преобразование осуществляет с помощь.

Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.

Основные части, из которых состоит коленвал, следующие:

  • Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
  • Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
  • Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
  • Основная выходная часть. Передает энергию трансмиссии и далее — колесам.

Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.

Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.

Картер двигателя

Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

Принцип работы кривошипно-шатунного механизма

Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.

Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью. В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.

Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.

Неисправности, возникающие при работе КШМ и их причины

Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

Перечень неисправностей КШМ

Наиболее распространенными поломками механизма являются:

  • износ и разрушение шатунных и коренных шеек коленвала;
  • стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
  • загрязнение нагаром сгорания поршневых колец;
  • перегрев и поломка колец;
  • скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
  • длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.

Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.

Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.

Признаки наличия неисправностей в работе КШМ

Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

  • Стуки в двигателе, непривычные звуки при разгоне. Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
  • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
  • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
  • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
  • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

Обслуживание КШМ

Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.

Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.

Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.

При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.

Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.

Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.

Вам также могут быть интересны статьи:

Кривошипно-ползунный механизм: устройство, принцип работы, применение

Основные размеры КШМ ВАЗ 2110, 2111, 2112

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала .

Устройство КШМ можно разделить на две группы: подвижные и .

Подвижные детали :

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел " ".

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр, чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения , состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

2. Неисправности КШМ двигателя

Приветствую читателей нашего уютного блога! Сейчас поговорим о сердце наших железных коней, двигателях внутреннего сгорания. А если точнее, в этот раз рассмотрим назначение кривошипно шатунного механизма – одного из ключевых механизмов мотора.

Трудно переоценить назначение кривошипно шатунного механизма. По сути, именно его мы обязаны благодарить за то, что наши железные кони не стоят на месте, а могут перевозить наши бренные тела и дарить нам радость вождения.

Если говорить сухим техническим языком, то назначение кривошипно шатунного механизма (КШМ) предназначено для преобразования энергии сгоревшей топливно-воздушной смеси в механическое вращение.

Естественно, КШМ не монолитная конструкция и состоит из ряда более простых деталей, о которых пойдёт речь ниже.

Условно элементы кривошипно-шатунного механизма можно разделить на две большие подгруппы: подвижные и неподвижные части.

К первой относятся поршни с кольцами и пальцами, шатуны, коленчатый вал (в простонародье коленвал), а также маховик.

Блок цилиндров

Неподвижные элементы КШМ представлены блоком цилиндров и головкой блока цилиндров, картером, а также прокладкой, расположенной между блоком и головкой.

А теперь чуточку подробнее о роли каждого из актёров театра кривошипно-шатунного механизма. Одним из первых удар сгорающей топливно-воздушной смеси принимает на себя .

Этот героический элемент представляет собой металлическую цилиндрическую деталь, грубо говоря, имеющую форму стакана.

На самом деле его форма довольно непростая – с канавками, выпуклостями, отверстиями и вырезами.

Все эти сложности форм нужны не только для эффективной работы мотора, но и для того, чтобы было где разместить поршневые кольца, а также куда вставить поршневой палец, к которому крепится следующая важная деталь механизма – .

Смысл существования шатуна прост, как пять копеек — передача поступательного движения поршня коленчатому валу.

Довольно скучная, но важная роль. Сам по себе шатун выглядит как металлический стержень двутаврового сечения.

С одного его конца находится отверстие для крепления к поршню при помощи поршневого пальца, а с другого – полукольцо, которое надевается на шатунную шейку вала и фиксируется болтовыми соединениями специальной крышкой.

Стоит отметить, что соединение шатуна с коленвалом подвижное – он же должен вращаться.

Коленчатый вал

Важность следующего элемента КШМ сложно переоценить – это .

Конечно, назвать эту деталь валом в привычном понимании довольно трудно – форма у него сложная и всё из-за того, что к нему крепятся все шатунно-поршневые связки двигателя.

Коленвал — ключевой вращающий элемент мотора и ему приходится выдерживать невероятные нагрузки, поэтому и требования к качеству его исполнения и прочности материалов высочайшие.

Основными деталями коленчатого вала являются шатунные шейки (места, куда крепятся шатуны), щёки, коренные шейки и противовесы. Кстати, своё название кривошипно-шатунный механизм получил именно благодаря части коленвала, а если быть точным, кривошипу – так иногда называют связку шатунной шейки и щёк по обе стороны от неё.

Венчает коленчатый вал с одной из сторон .

Нужно отметить, что, несмотря на свою относительную внешнюю простоту, маховик играет сразу несколько ролей.

Во-первых, в его главную задачу входит поддержание равномерного вращения коленвала во время работы мотора.

Во-вторых, именно это скромное металлическое колесо выступает связующим звеном между стартером и всё тем же коленчатым валом, когда Вы поворачиваете ключ зажигания для запуска двигателя.

Практически все подвижные части кривошипно-шатунного механизма располагаются в блоке цилиндров, а закрывает всё это крутящееся и вращающееся безобразие от наших с Вами глаз головка блока цилиндров.

В неё, как правило, встроены клапаны, свечи и каналы для подвода охлаждающей жидкости, масла, а также воздушно-топливной смеси.

Нужно отметить, что именно вместе с головкой обуславливают такой немаловажный параметр двигателя, как его масса.

В классическом исполнении эти элементы изготавливаются из чугуна, но, благодаря современным технологиям, автопроизводители всё чаще применяют алюминий в их конструкции, что благотворно влияет на вес мотора и, как следствие, всего автомобиля.

Применение лёгких сплавов стало возможным даже в столь критичном элементе блока, как гильзы цилиндров (в них перемещаются вверх и вниз поршни), которые должны обладать стойкостью к износу и выдерживать высокие температуры.

А сколько цилиндров у твоего коня?

В заключение, дорогие наши читатели, хотелось бы сказать несколько слов о видах компоновки двигателей внутреннего сгорания и схемах расположения цилиндров.

Автомобильные концерны комплектуют свои творения моторами нескольких видов, а именно:

  • рядными;
  • V-образными;
  • оппозитными;
  • W-образными.

С точки зрения баланса, самыми оптимальными являются рядные и оппозитные двигатели.

Первые довольно распространены в автомире – рядные четырёхцилиндровые агрегаты встречаются сплошь и рядом, а вот судьба оппозитных не столь публична – они стали синонимом некой эксклюзивности и «клубности».

Так, к примеру, их можно встретить в недрах спортивных Porsche или Subaru.

Оптимальным же сочетанием характеристик обладают V-образные и их родственные W-образные двигатели. На их базе строят как доступные для среднестатистического автолюбителя машины, так и сумасшедшие суперкары, стоимость которых столь же невероятна, как и характер.

Работа W-образного двигателя:

//www.youtube.com/watch?v=xKBpiNorQYQ

Уважаемые посетители блога, в этой небольшой статье мы попытались прояснить назначение кривошипно шатунного механизма, рассмотреть его в общих чертах его компоненты. Буду признателен за подписку.

Читайте статьи на блоге и повышайте свой профессиональный уровень.

Рассказать друзьям